

Culvert Inspection and Repair

We could have fixed it cheaper, sooner!

Bonnie Peterson, HydInfra Coordinator Minnesota Department of Transportation APWX Mpls 2016

We all have a stake in $A \oplus B$

Big storm + bad pipe = wrecked road

We could have fixed it cheaper, sooner.

Identify failing culverts by learning the common mechanisms of culvert deterioration

Road Failure

in culverts less than 10 foot span and storm drain pipes.

Road fill washes away at each burst of rain

CMP Storm Drain on Hadley Avenue at MnDOT Oakdale Office in 2015

Pipe with Holes causes Piping and Road Void

This is what piping looks like — water leaves the pipe at holes or joint separations and flows along the outside

Typical Culvert Failure has a pavement patch

MN 95 2015 Eric Brenna

Water flows along the outside of pipe carrying road fill away.

MN 95 near MP 89, near Marine on the St. Croix

Pipe Repair is too late when the road surface reflects condition of pipe

While some steep slopes are prone to failure leaking pipes lubricate the slide

Pavement may span the void for awhile

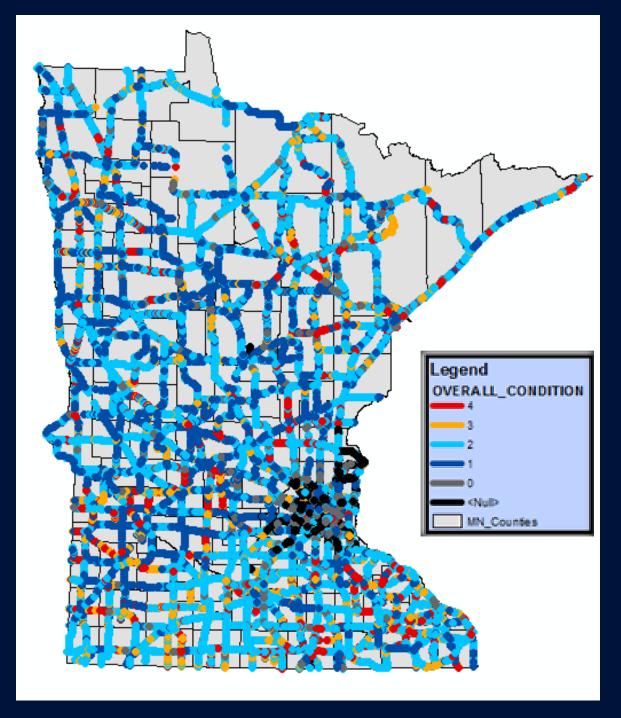
until it doesn't.

Holes in 6' x6' box culvert allowed road fill to wash out but pipe did not collapse

Inspect and Repair to interrupt culvert deterioration

before the road is affected (cheaper)

A good inspection system tells you which culverts to fix before the paving project (not after)

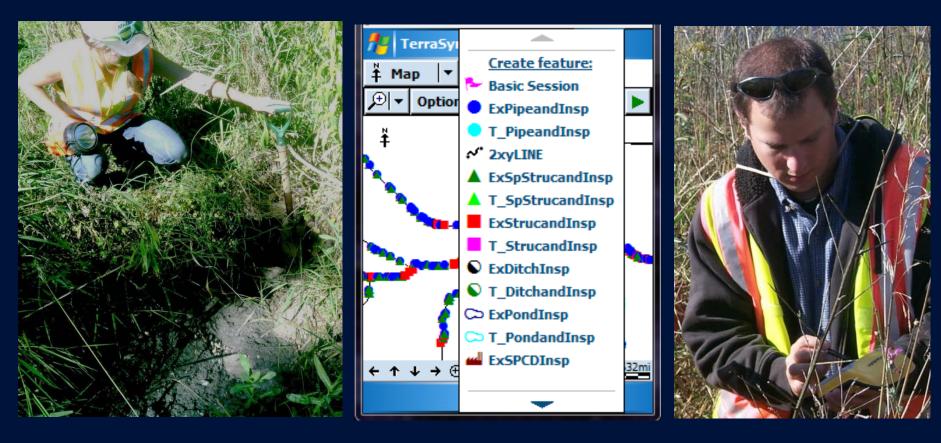


HydInfra = Hydraulic Infrastructure

MnDOT's Culvert and Storm Drainage System Inventory and Inspection Program

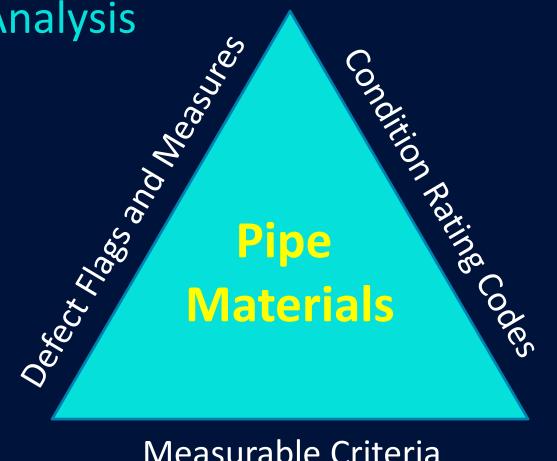
(Culverts less than 10 foot span and storm drain features)

117,000


HydInfra Pipes
in MnDOT's
inventory

Blue dots are pipes in good condition

July 2016



HydInfra Inspectors record drainage features with GPS devices

Inspectors use Trimble GPS with Terrasync or ArcPad. District Key Experts guide Inspectors and process field data with Pathfinder Office. Process will change in 2018 when Agile Assets software is implemented.

3-part rating system tracks Materials for Lifecycle Cost Analysis

Track many Materials for Lifecycle costs

Intuitive Condition Rating Codes suggest the need for repair

HydInfra Inspection Manual

Culvert and Storm Drainage Systems

Condition Rating Codes:

Flags and Measures describe the defects

Condition Indicators

- –Needs Repair?
- —Piping
- -Cracks
- -Holes
- -Deformation
- -Misalignment
- —Max Joint Separation
- –# Separated Joints
- –Separated Apron
- -Spalling/Flaking
- –Pitting/Rusting
- -Infiltration

Roadway Indicators

- –Void in Road
- -Road Distress
- –Inslope Cavity
- -Erosion/Scour

Not in Condition Rating

- -Needs Clean?
- -Plugged
- -Silt
- -Sediment % Full
- -Standing Water

Each Material Type has explicit rating criteria

Road Void is always Condition 4

HydInfra Ratings Guide

Concrete Pipe & Special Structure

Factors: Structural integrity, Integrity of surrounding material

1 Excellent Condition

- Minor chipping at joints/openings
- Hairline cracks
- Insignificant spalling or scaling

2 Fair Condition

- Joints broken or pulled apart up to 1" (anywhere along joint)
- Aggregate exposed
- Cracks evident with widths up to 1/8 inch
- Spalling or scaling to 1/4 inch depth

3 Poor Condition

- Jointo broken or pulled apart 1º 2º (apprubare clane the joint)

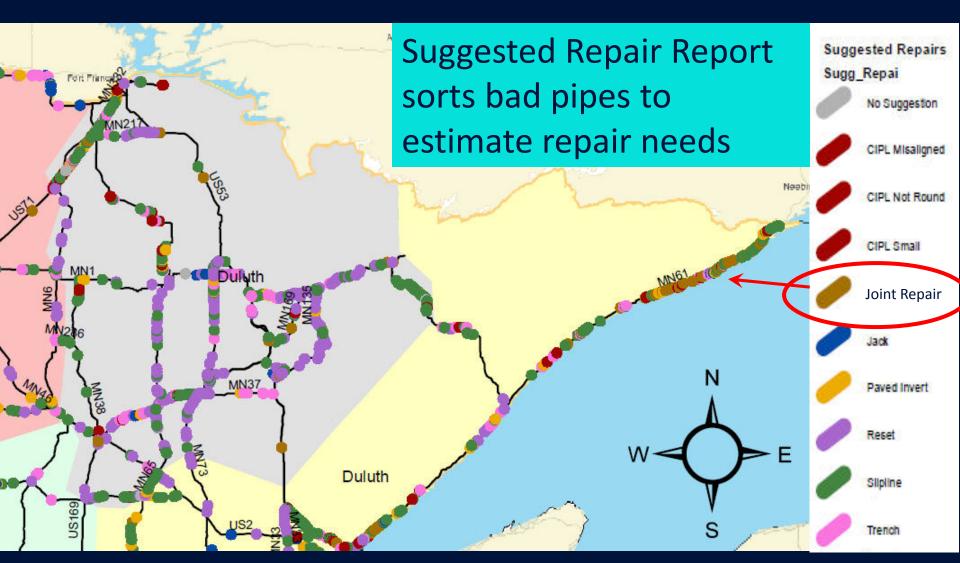
4 Very Poor Condition

- Joints pulled apart or broken (more than 3" at any point along joint)
- Cracking evident with widths > 1/4 inch
- Reinforcement fully exposed in places
- Eroded holes through concrete or bottom gone
- Deformation
- Cracks showing movement pine pieces have shifted
- Pipe condition is causing soil loss beneath road surface

Pipe condition is causing soil loss beneath road surface

Notes:

Special Structures include Aprons, Slotted Drain, Headwalls, Wingwalls, open Flumes, Weirs, Expander/Reducers, Floodgates, Energy Dissipaters and other items that are <u>not</u> Pipes, Structures, SPCDs (Structural Pollution Control Devices), Ponds or Ditches.


Attributes such as crack width and spalling depth won't be measured in most cases inspectors must estimate sizes based on what they see.

eath road

<u>HydInfra Culvert and Storm</u>
Drainage System Inspection Manual

Pipe size, shape and material, plus defect flags point to Repair Methods

Cluster of suggested Joint Repairs indicates joint separations along Highway 61

Statewide Pipe Repairs Cost Estimate from Suggested Repair Report

						Rep	air me	thod				
4	Α	В	С	41					Н	j j	L	R
1			Repair me						ntract average bid			Contract
2	District	1		District	1		r		Unit Pi	Cost	tract	Total Cost
4 5		- 14	CIPL Grout			CIP	L			\$183	973 387	
6			Jack			Grout				207 165		
7	6 0	- 4	Paved Invi	1 11					\$2,4		1,212	
9	2 0	- 3	Slipline	9 (9			Jack Paved Invert		\$26,3		3300.103	
10	District	2	Trench	1 3		Pav				\$40	\$40.212	\$5,405,504
12	District	-	CIPL			Reset Slipline			\$323,374,533			
13			Grout Jack	1					\$1.552	383 593		
15	Paved Invi		Paved Inve			Trench			ED 000 040 597			
16	9	_	Reset Slipline	45	_	3562 \$93.22 foot		\$2,4	\$2,200	\$365,255		
18		_	Trench	21	_	1633	\$65.37		\$26,362	.84 each	\$726,406	\$1,893,341
19	District	3		1								
20			CIPL	23		3637	\$129.65	foot			\$518,691	
21			Grout	5		644	\$32.48	foot			\$23,009	
22		- 3	Jack	8		1286	\$725.00	foot			\$1,025,585	
23	. 0	_	Paved Inve			152	\$16.24		33		\$2,715	
24			Reset	11		1029			\$2,449	.80 each	\$29,643	SLAHNNESOL
25		2	Slipline	44		3833	\$93.22	2001000			\$393,043	201 (4 ×)
26			Trench	27		1848	\$65.37	foot	\$26,362	.84 each	\$915,860	\$2.90 OF TRANS

Culvert Repair Methods used by MnDOT Maintenance:

Trench **New Pipe**

Joint Repair

Paved Invert

- Trench New Pipe
- Slipline
- Replace Aprons
- Reset
- Extension
- Joint Repair
- Hole Repair
- Paved Invert
- Fill Voids

Culverts of different materials have different failure modes

that progress through stages that end in road failure.

Pipe Material and its Environment determine Lifespan

- Avoidable defects Design or installation-caused problems, includes manufacture, construction or design
- Random Events A culvert in the ground can be damaged by random events and forces – huge rainfall, frost heave, etc.
- Gradual Deterioration A chunk of good pipe material in the ground may degrade gradually, influenced by its environment – manufacturer's projected lifespan

Most Steel pipe gradually deteriorates through a series of defects shown by inspection flags:

- 1. Pitting/Rusting
- 2. Spalling/Flaking
- 3. Holes
- 4. Piping
- 5. Road Void
- 6. Deformation

HydInfra data shows that about 10% of MnDOT's steel pipe has holes

Joint Separation and Misalignment is rare in Steel pipe and may indicate a slope failure

Repair Steel Pipe

Pave the invert, install a liner or replace the culvert before piping and road voids occur

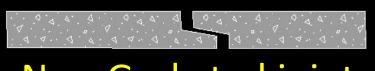
when inspection shows Flaking Rust or a Hole less than 1 inch

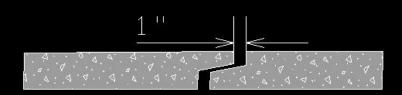
Paved Invert Repair for steel pipes 3 foot height or larger

1971 Paved Invert repair still looks good in 2015

Concrete pipe fails most often when Joint Separation and Piping causes Road Void

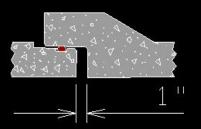
HydInfra data shows about 7% of MnDOT's concrete pipes have separated joints


Void in Road may occur through Joint Separation 1 inch or greater


Concrete jacked pipe with 1½ in joint separation creates road void, shown by survey range pole in hole in the pavement. 27SEP2011 – Rob Coughlin

Joint gaps are less likely with Gasketed Concrete Pipe

Non-Gasketed joint

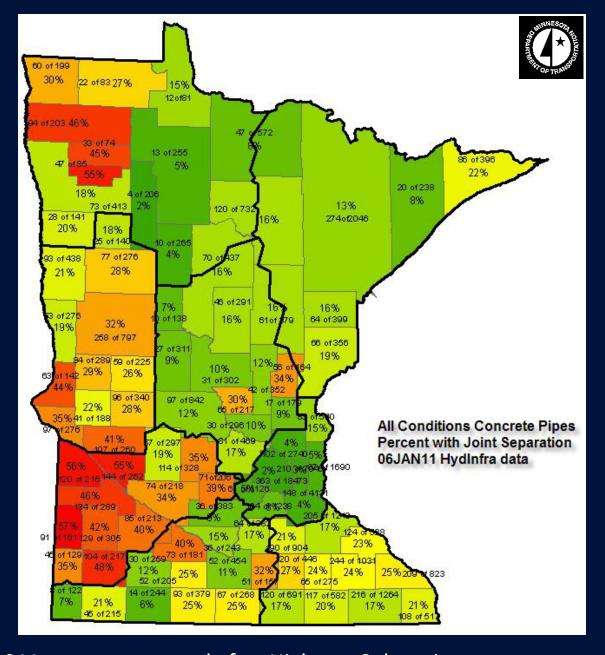

JOINTS IN
NON-GASKETED PIPE
STD. PLATE 3000

24" pipe example

Gasketed joint

JOINTS IN GASKETED PIPE STD. PLATE 3006

Pipe tie bolts are standard on new concrete culverts but won't hold under stresses


District 1 photo shows broken pipe tie pointing to joint separation in Concrete arch pipe

Concrete

Joint Separation
may be worse in
western
Minnesota

Inspection flags show hotspots for Joint Separation

This 2011 map was created after Highway Culvert inventory was completed but before most Districts were focused on repairing pipes.

Concrete abrasion, acid attack and bad manufacture are far less common

Abrasion from rocks District 1 Duluth

Acidic factory discharge, I-94 St. Paul

Metro District

Bad concrete mix in alternating pipe sections, District 3 Baxter

Acid attack looks similar to bad concrete mix but alternating good - bad pipe sections suggest bad material

MN Highway 36 culvert in Roseville alternated many good and a few bad pipe sections

Porous weeping patches indicate bad concrete material

The pipe photo shows water trickling down the inside wall through perforations or honeycombing.

Repair Concrete Pipe

Repair joints or install liner or replace the culvert before piping and road voids occur

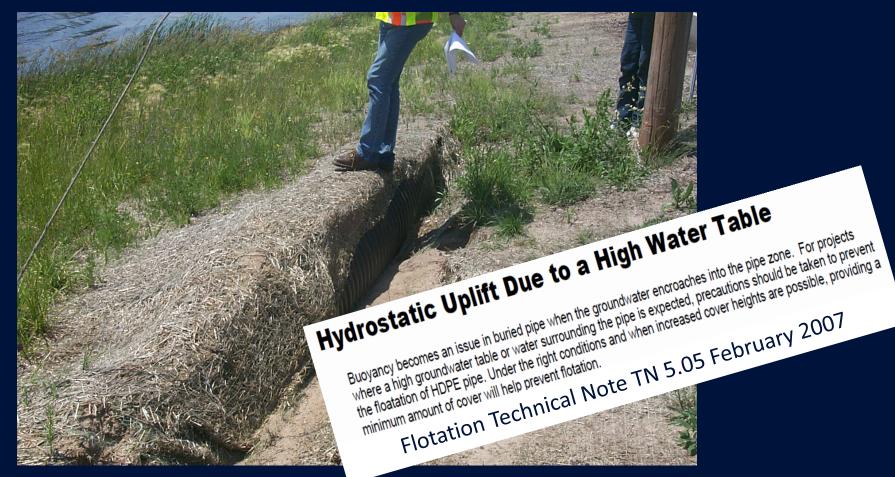
when inspection shows

Joint Separations 1 – 3 inches

Joint Repair in large Concrete culvert

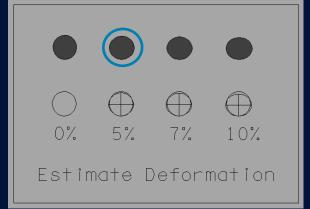
There are many varieties of Plastic Pipe but we have information on HDPE

HydInfra data shows about 5% of HDPE pipes have visible deformation



Random grass fire burned this HDPE It has Flaking, Holes and Deformation

Too little cover – Construction change caused Floated HDPE


Pipe was re-routed across road inslope with too little cover (about 6 inches). High water or frost heave can cause the pipe to "float".

Bad Resin 1996 HDPE pipe shows Deformation and Misaligned and Separated Joints

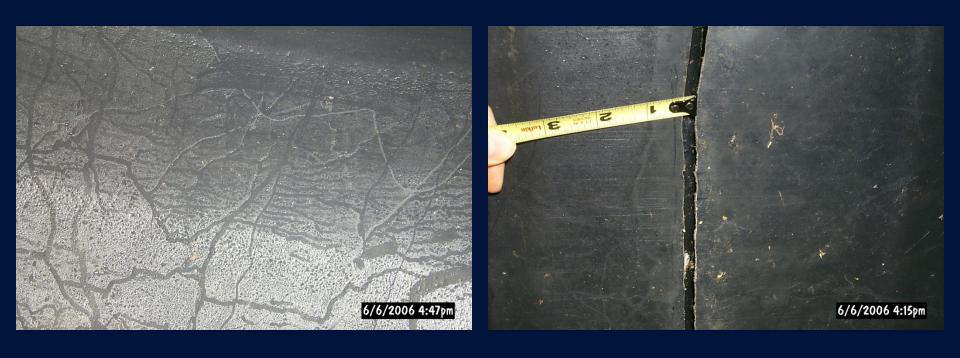


Photo above shows 5% Deformation (rotated)

1996 bad resin HDPE has patterned surface and cracks in 2006

Resin Specs have been changed since this pipe was manufactured

Repair Plastic Pipe

Replace pipe or repair cracks before piping and road voids occur

or when inspection shows Cracks, Misalignment or Deformed 10%

HDPE cracks were repaired by manufacturer

- 2006 repair on 1996 HDPE
- Drill hole to stop cracking
- Patched by manufacturer's crew with their material

Better inspections lead to better repair recommendations.

Begin Part 2
Kris Langlie and Rob Coughlin

